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GENERAL GROUND-WATER TECHNIQUES

CALCULATION OF RESISTANCE AND ERROR IN AN 
ELECTRIC ANALOG OF STEADY FLOW THROUGH 
NONHOMOGENEOUS AQUIFERS

By ROBERT W. STALLMAN

ABSTRACT

Several types of nonhomogeneous aquifers were modeled using resistance 
elements to represent finite sections of the aquifer. Various design equations 
were used to calculate model resistance in selected problems. Flow solutions 
obtained from the models qualitatively demonstrate the desirability of carefully 
selecting the design equation so as to minimize the model size for attaining a 
given accuracy of solution. Criteria are established which show the types of 
variations of transmissibility that can be modeled by making resistance inversely 
proportional to transmissibility without regard for spacing of the model grid. 
Areal trends of transmissibility are computed from the model data to illustrate 
numerical techniques. Head values computed by numerical techniques are 
compared with those observed on the analog to determine the accuracy of the 
analog solution.

INTRODUCTION

One type of electric model of ground-water flow is constructed as 
an assemblage of fixed resistance elements, each of which represents a 
large block of aquifer material. Each element in the model represents 
an analogous region in the aquifer system. The accuracy of the 
ground-water flow data derived from such a model is highly dependent 
on the accuracy with which the aquifer is represented by the model. 
The electric analog model, constructed as an assemblage of discrete 
resistance elements, is essentially equivalent to a set of finite-difference 
equations. Thus, errors in flow-problem solutions obtained from 
models of this type will be at least as great as the errors in a mathe­ 
matical solution of the finite-difference equations representing the 
continuous aquifer.

Several sources of error must be considered in evaluating the 
accuracy of analog or finite-difference solutions. Those frequently 
cited are: (a) truncation or roundoff errors, (b) observational errors 
made in measurement of the model, (c) errors due to instability of 
model or analog control equipment, (d) errors due to representing the

Gl
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continuous aquifer as a group of finite elements, and (e) inaccurate 
proportioning between the aquifer properties and model components. 
Mathematical investigations (Blanch, 1953; Douglas, 1956; Garza, 
1956; Greenspan, 1957; Landau, 1956; Lawson and McGuire, 1953; 
Milne, 1949; Paschkis and Heisler, 1946; Walsh and Young, 1953; 
and Wasow, 1952) have defined errors due to the above sources (a) 
and (d) for certain finite-difference solutions. By proper design of 
the model, matrix error of the types (a) and (d) may be reduced to 
insignificance with certainty only if those factors producing error can 
be evaluated completely before the model is built. Unfortunately, 
this evaluation can be made in only a few problems in which errors 
have been or can be defined by mathematical studies. No general 
criteria as yet exist for exactly predicting errors of these types. This 
is because the errors are dependent on the fineness of the model grid 
representing the aquifer, on the manner in which the characteristics 
of the aquifer change in space, and on the curvature of the potential 
distribution being investigated. In nearly all flow-problem solutions 
performed as engineering studies, one or more of these factors is 
unknown. Thus, the model design initially can only be guided by 
intuitive reasoning from general knowledge of design versus error 
characteristics.

Although definition of the error inherent in an electric model 
solution is important, tolerance for error is ordinarily quite high in 
hydrologic studies. This is because the aquifer characteristics are 
seldom known with great accuracy, and therefore the model matrix 
itself can never be an exact replica of the aquifer. Because the hy­ 
draulic characteristics of aquifers are not likely to be known within 
± 10 percent, it seems rather ludicrous to strive for analog accuracies 
on the order of 1 percent in general-purpose investigations of ground- 
water flow. Wide tolerances notwithstanding, no analog solution 
obtained may be considered a sufficiently accurate forecast or descrip­ 
tion of flow unless an error evaluation shows the solution accuracy 
to be within the tolerance demanded by final application of the solu­ 
tion. Error analysis has generally been made from a viewpoint 
that looks toward an unknown solution. For most ground-water 
flow problems this position is untenable. The viewpoint adopted here 
is that a solution should be obtained through model design guided 
by experienced intuition, and error evaluations should be made from 
the completed solution.

On the following pages, criteria are discussed for designing the model 
resistance elements which represent given blocks of the aquifer 
prototype. The interrelationship between the aquifer segment and 
the electric model component is discussed on the basis of a similitude 
between the electrical flow in the model and of ground-water motion
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in the aquifer. A few features of model design, as related to aquifer 
characteristics, are studied in detail to indicate type problems for 
which caution in selecting the grid subdivision must be exercised. 
Finally, the use of finite-difference methods for evaluating the total 
error in the analog solution is proposed and discussed.

EQUATIONS OF FLOW

At any given point in a nonhomogeneous aquifer, two-dimensional 
steady flow may be defined by the following differential equation:

-- .- 
2 VJ ^ dzdy by

where T is the aquifer transmissibility, h is the height of the water 
level above an arbitrary horizontal reference plane, and x and y are 
the coordinates of the point at which h is defined. The differential 
terms of equation 1 may be written in finite-difference form (South- 
well, 1946), whence

The subscript notation of equation 2 is identified on figure IA, which 
shows a small segment of the aquifer subdivided by a rectilinear grid, 
with spacing Aa? and A?/.

The model resistors connecting points of the analogous grid inter­ 
sections, or nodes, of figure IA are shown in figure IB. To afford a 
correct analogic relation between the systems of I A and IB, the values 
of resistance of the elements in figure 1 B must be compatible with the 
transmissibility distribution about the nodes of figure IA. The equa­ 
tion of steady electrical flow to the junction (p, ri) in figure IB may 
be expressed in simplest form by the following:

,n i p+l p, n \ n l P, n <n+l P,n _ r> I    5       I    5       I    5        u

in which e is the voltage at the junction indicated by the subscript, 
and R is the resistance of the element between junction (p, n) and the 
junction indicated by the subscript. Equation 3 may be rewritten 
in the following form:

g n-1 en+l r_l_ 1
? n ^PP » I 15i" Z? 7? ' I? -CVn-1 -ttn

To permit a more easily visualized comparison of the equations of
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FIGURE 1.   Model relations at a point in a two-dimensional field 

of flow. A, grid reference in the aquifer; B, analogous resistance 
junctions of an electric model,

flow of ground water and electricity, let Ax  Ay and rewrite equation 
2 as

Let

n-^)+hn+l(TP. n + Tn+l 4 Tn- l^-4hp, nTp . re=0 (5) 

TP. n - Tp+l~ Tp- 1 =j^- (6a)



ELECTRIC ANALOG, NONHOMOGENEOUS AQUIFERS G5

_ TI n 1  L - 1 °

Tv, n^ n+l~ n - 1^- (6d) 
4 # +!

in which (7 is an arbitrarily selected constant relating model resistance 
to aquifer transmissibility. From equations 6a-d,

4-tp, «=C/ p   +^p   +15   +15   (6e)
\_R v-\ -iip+i -ttn-l -tt«+lj

On the basis of the analogy between Ohm's and Darcy's laws, e may 
be taken to be proportional to h. Substitution of the latter propor­ 
tionality and the relations 6a-e into equation 4 transforms equation 
4 into equation 5. Thus, it is evident that equations 6 analogically 
relate the finite-difference equations of ground-water flow to the equa­ 
tions of electrical current flow for a junction like (p, n) in figure IB.

RESISTANCE VALUES

Equations 6 may be used for calculating the resistance values 
around each junction of the model if the transmissibility distribution 
in the aquifer system is known. However, unless the transmissi­ 
bility configuration and the node spacing are such that the value of 
a given resistance element, say, Rp^i of figure IB, is the same regard­ 
less of whether it is calculated using node p,n or node p l as the 
reference for equations 6, the model itself cannot be an exact finite- 
difference replica of the aquifer. The transmissibility distribution 
over the interval 0<x<3, shown on figure 2, may be used to illustrate

x= o i 2 3 4 5

7= 1 3 9 27 81 243 

FIGURE 2. Grid reference and corresponding values of T along #=constant for T=SX.

this point. There, it has been assumed that T=3X and Ax=l. 
Thus, T is assumed constant along lines parallel to the y axis. Taking 
x=2 in figure 2 for the p, ̂ -reference node of equations 6, the resistance 
of the element to be placed between x= 1 and x 2 may be computed 
from equation 6a as follows:

660452 6
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But the value of this same resistor is also defined by equation 6b if 
the #,n-reference node for equations 6 is taken at x=l. Thus, from 
equation 6b,

-7^=3+ =5

a result markedly different from that found with the #,n-reference for 
equations 6 at x=2.

Rather than calculating R values by the finite-difference techniques, 
Karplus (1958, p. 181) has suggested making the values of the model 
resistors proportional to the integral of resistivity between nodes. 
Although the latter approach is justifiable as a much better approxi­ 
mation of the continuous aquifer media than equations like 6, error 
dependent on the flow regime will still arise. The latter error will be 
dependent mainly on the relative magnitude of the higher differentials 
of head and probably will be insignificant in many analog solutions.

Analysis of the form of T in space and integration of that form 
between all pairs of adjacent nodes according to Karplus' method for 
resistor design may be a laborious process. Study of equations 6 
reveals what may be a less arduous means for calculating resistance

m __rp
values. Note that terms like p+1    are simply J of the AT

between two successive grid intervals. Thus, if T changes linearly, 
or almost linearly, over a span of three successive grid intervals, the 
resistance values between nodes, as given by equations 6, are simply 
inversely proportional to the arithmetic average of T between nodes. 
For all linear forms of T, this is true irrespective of which node is used 
as the p, n-reference in equations 6. It is also true for a host of other 
functional relations describing variations of T in space. The general 
nature of such functions can be discerned by defining T in the form of 
Taylor's series (see, for example, Scarborough, 1958, p. 338).

If equations 6 are to afford a single value of resistance between 
model nodes, regardless of which node is used for reference, then, 
from equations 6a and 6b for the nodes of figure 2,

 0-2-3

or

From Taylor's series, it can be shown that

-12~-* 3  b^ ̂ ~W 2^3T~ b? 2^5! 

and
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&T kx-* .,.
+ 81 + ' ' ' (8b)

From a substitution of equations 8a and 8b in equation 7,

&T b5T ($T
0.1458 ^3 Aar3+0.02070 ^ Aar5+0.001128 |^- AaT 7+ ... =0 (9)

without a loss of generality. An equation identical to the form of 9 
may also be derived for the y axis. Equation 9 will always be satis­ 
fied if the differentials included are zero everywhere in the flow field. 
Thus if variations of T in space are defined by either linear or quad­ 
ratic forms, equations 6 will always yield a single value of R for the 
space between a given pair of nodes irrespective of the reference 
position adopted for computing and irrespective of the magnitude of 
Ace. For other functional relations defining T in space, the series 
represented by equation 9 must be made insignificant by adopting 
an appropriately small value of Ax if equations 6 are used for computing 
values of resistance.

Equation 9 is helpful to the model designer only in that it spec­ 
ifies the type of variations of T for which resistance values can be 
computed as simple averages without concern for the magnitude of 
node spacing. However, for those situations in which the criterion 
of equation 9 is not satisfied along both the x and y axes, a model 
design based on equations 6 might be much less efficient than one 
based on Karplus' integration of hydraulic resistivity from one node 
to another. Under some circumstances, the latter approach may 
lead to a considerable amount of computation to define the resistor 
grid, but it may also lead to a greatly improved model efficiency by 
reducing the number of resistance elements required to obtain a given 
accuracy of the solution.

Consider, for one example, the case in which

T=a+bx (10)

To represent T in the model we may use the fundamental model 
relation

R= (11)

in which R0 is the resistivity of the model medium at the point where 
T=T0 . Following the form used by Karplus (1958, p. 181) with

equations 10 and 11, dR~   , °

/»Z-(P+!)AJ; ftx=(p+l)Ax Jv
= dR=-T0R0b ^2* (12)

Jx=pAx Jz=pbx \CL-\-VX)
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in which R& is the resistor representing the aquifer between nodes 
p and p+1. From equation 12

Rfx=TeBiAx I", , , . , ,* , , A x 1 (13)w o- L(«-f6^Ax+6Aa;)(a+6^Aa;) J v '

or

In a relation like T=a-\-bx, the finite-grid model cannot be designed 
by lumping resistivity characteristics between grid intersections of 
the prototype. This is evident from equations 13 and 14. Letting 
Ax approach zero results in the resistance element value being inversely 
proportional to the square of transmissibility, at variance with the 
basic model relation given by equation 11. Equations 13 and 14 
illustrate that some model elements must be designed only as a direct 
function of the finite-difference equivalents of the lumped transmissi­ 
bility relations between two specified nodes. The latter approach 
may be taken by utilizing a familiar modified form of Darcy's law. 
For T=a-\-bx, one-dimensional flow may be expressed as

v=-(a+bx)^ (15)

where v is the gross ground-water velocity. Integration of equation 
15 between two points p and p-\-l along the x direction leads to

, , a-\-bxp+i_hp  

Comparing equation 16 with Ohm's law, the left side of equation 16 
is directly analogous to the resistance between points p and p-\-l if 
voltage is taken proportional to k, and if electrical current flow is 
proportional to v. Thus, for T a-^bx, the model resistance between 
nodes p and p-\-l could be made directly proportional to the value of 
the left side of equation 16.

ONE-DIMENSIONAL FLOW SOLUTIONS

The solutions of a particular problem of one-dimensional flow 
obtained are compared here by using the various procedures already 
discussed for computing resistance values. From equations 6, the 
resistance values are independent of Ax for the relation T=a-\-bx, 
because equation 9 will always be satisfied. Thus, one set of values 
of model resistance might be computed simply by making them 
inversely proportional to the average T between two nodes. Another
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set may be constructed from equation 16. Still another, but erroneous, 
set might be developed from equation 13. Further discussion of the 
latter set is included only to illustrate the error committed. 

Analog solutions of the head distribution were obtained for

T=lX104 (l+z) (17)

with a grid spacing of Ax 1.0 assumed for the interval 0<x<10.0, 
with h Q at x=0, and A. 10.00 at x W.O. An analytical solution 
for the distribution of head is easily obtained as follows: v, the 
velocity at any point x, is obtained from Darcy's law and equation 17 
as

0=_lX104 (l+aO^ (17a)

For steady flow v is constant with x. Equation 17a can be integrated 
between xa and xp, from which

10* (17b)
1 -j-J>a

Substituting the boundary conditions xa =0, £0=10, ha  Q, and hp 
= 10.00 in equation 17b yields

(170
2.3979 

Substituting equation 17c in equation 17b and letting xa =0 shows

(17d)

Equation 17d is the analytical solution of equation 17 for the boundary 
conditions stated. Head values calculated from equation 17d are 
given in the second column of table 1 .

Equations 6, 13, and 16 were used individually to design three 
electric models of the aquifer defined by equation 17 over the interval 
0<x<10. Each model consisted of a series of variable resistors set to 
within 0.5 percent of the resistance indicated by the design equation. 
Voltage control and model readout were accurate to 0.1 percent or 
better. The theoretically correct head at any point x for each of the 
model designs is given by and was computed from the relation

X-AX

X)

x=0
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TABLE 1. Head distribution for one-dimensional flow through an aquifer with 
T=1~X.10* (l-\-x), as determined from theory and model observations

X

0
1
2
3
4
5
6
7
8
9

10

Analytical
solution

0
2.891
4.582
5.781
6.712
7.472
8. 115
8.672
9. 163
9.604

10. 000

Equation 6

Obs.

0
2.81
4.50
5.70
6.64
7.41
8.06
8.63
9. 12
9. 59

10.00

Theor.

0
2.817
4.507
5.714
6.652
7.421
8.071
8.634
9. 131
9.598

10. 000

Equation 16

Obs.

0
2.89
4.57
5.77
6.70
7.46
8. 10
8.66
9. 15
9.60

10.00

Theor.

0
2.891
4.582
5.781
6.712
7.472
8. 115
8.672
9. 163
9.604

10. 000

Equation 13

Obs.

0
5.51
7.34
8.26
8.82
9. 19
9.46
9. 66
9.79
9.92

10.00

Theor.

0
5.500
7.333
8.250
8.800
9. 167
9.429
9.625
9.778
9.900

10. 000

Heads observed on the three models and the theoretically correct 
heads calculated by means of equation 18 are given in table 1 for 
comparison with the analytical solution. All the model observations 
agreed with the corresponding theoretical model analysis to within 
±0.5 percent. The electric model based on equation 16, as expected, 
produced the most accurate solution at a cost of greater time for 
computing resistance values. For this particular flow problem, the 
maximum error arising from the model based on equations 6 is only 
about 3.5 percent. This is not a significant error for most field 
applications.

Modeling T by the most fundamental finite-difference approach, as 
stated by equations 6, can sometimes lead to an unnecessarily large 
model to gain a given accuracy of the solution. The functional re­ 
lation T=3X was used earlier as an example in which resistance values 
for model design cannot be computed by equations 6 unless Ax is 
comparatively small. This is because the higher differentials of 
T=3X are all larger than the first and second differentials, and there­ 
fore equation 9 cannot be satisfied, even approximately, unless Ax is 
very small. The effects of Ax on the values of R, calculated by means 
of equations 6, are illustrated in table 2. The resistance value was 
determined from equations 6 for the space between nodes 2 and 3 on 
figure 2, using both nodes alternately as reference, and letting Ax take 
several different values as node 2 was held at x 2. Where equation 
6 is applicable, all the calculated resistance values in any one column 
of table 2 should be alike. Thus, for this particular functional re­ 
lation, a net spacing of Ax  1 is much too large to permit the simplified 
calculation of R by averaging T values between adjacent nodes. 
With Ax=0.10, R calculated by equations 6b and 6c differs from the 
R calculated by averaging T values by only about 0.3 percent. The
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TABLE 2. R/C values calculated from equations 6a and 6b for the space between 
nodes 2 and 8 with T=S* and the node configuration of figure 2, keeping node 2 
at x = 2

Ar =

Gale, for 
Calc. for

Gale. J?2

node 2 
node 3

3/C    
3/ T3

2

Calculated K/C values for indicated units of A a;

1.0

0. 06667 
0. 1111

0. 05556

0.5

0. 08622 
0. 09019

0. 08134

0.10

0. 10531 
0. 10532

0. 10501

0.01

0. 110505 
0. 110505

0. 110501

error introduced in a solution will be dependent on these deviations to 
some unknown extent. If R is to be computed for T=3Z on the basis 
of average T, it would be judicial to select a Ax of less than 0.1 so as to 
gain a solution accuracy probably within one percent.

Further study of modeling relationships reveals a more simplified 
means for modeling T=3* and increasing the solution accuracy 
obtained for a given number of resistance elements. Following much 
the same approach used in deriving equation 12 for calculating R&,

(  
=

J v

( (P

J p&x

for T=2>x . From equation 19

For Ax = 1.0 equation 20 is

(19)

(20)

(21)

Equation 21 is a relatively simple form for calculating R; it eliminates 
the need for averaging T values at adjacent nodes, and is a more 
exact replica of conditions between nodes because of the integration 
performed. Contrary to the results from equations 13 and 14, 
equation 21 shows resistance to be inversely proportional to T. 
Therefore, it is in agreement with the basic analogy given by equation 
11 and can be used directly for model design.

If resistors are designed using equations 6 and 21, an electric analog 
solution for one-dimensional flow over the interval 0<£<i4, with 
h=Q at x=0 and h=W at x=4, will produce the values of head 
given in table 3. The greatest error for the study reported in column 2 
was about 2 percent for x smaller than 1.5. For x greater than 1.5, 
the observed values of head compared more favorably with the 
analytical solution. For example, five times the number of resistors 
were required for the solution given in column 2, where Az=0.2, than
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TABLE 3. Computed heads and heads observed on electric models for one-dimensional
flow with T=3X

(1)

X

0
1
2
3
4

(2)

Model by eq. 6 
Ar=0.2

0
6. 62
9.00
9. 74

10. 00

(3)

Model by eq. 20 
Ar=l

0
6.75
9.00
9.76

10.00

(4)

Analytical 
solution

0
6. 75
9.00
9. 75

10.00

were employed for the solution given in column 3. Yet, the solution 
accuracy appears to be considerably better in the data of column 3. 
Thus, for the function T=3*, equation 21 yields a design approach 
much superior to the finite-difference design embodied in equations 6.

DESIGN OF MODEL OF TWO-DIMENSIONAL FLOW

A mathematically rigorous description of model resistance for two- 
dimensional flow would require detailed knowledge of the flow charac­ 
teristics about each point in the flow field. However, such knowledge 
is not ordinarily available and approximations to the more rigorous 
model design must be applied. One such approximation can be 
formed by considering the velocity components along the x and y 
directions separately for the purpose of calculating model resistance.

d% d2/t 
This approach is equivalent to assuming that  ^ and ^ ^ are very

small compared with ^  and ^  at all points in the flow system, and

dTthat the higher spatial derivatives of T are much smaller than z  or

dy
These conditions are satisfied in most aquifers. Thus, model

resistance along the x and y axes can be computed independently 
of each other by integrating T along each axis in turn, as was done 
along the x axis in the derivation of equation 16.

Take as an example the aquifer wherein T is constant with y, and 
along the x axis

1 (22)T=
100(l+z)

over the rectangular region 0<jc<^9 and 0<j/<O6 shown in 
figure 3. Applying the same principle used in the development of
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equation 16, the resistance values along the x direction should be

1 -x|) (23)

Similarly, the model resistors along the y axis have the following 
values:

^=100(l+x)(2/re+1 -2/re) (24)

in which R$y represents the resistance between adjacent nodes n-f-1 
and n.

Kesistors between nodes along the y direction represent an aquifer 
width of Ax between p  % and p-\-%. They must represent the hy­ 
draulic resistivity of the space in the aquifer between p  % and p-^-Yz] 
and according to equation 22, T is nonlinear over this interval. 
Equation 24 is a first approximation in which nonlinearities in T 
have been ignored. Nonlinearities in T may be accounted for partly 
by defining the average velocity along the y axis as

fl f Vy= \   
* LAccJp-

dh

in which the terms in brackets represent the effective T along the 
y axis for flow along that axis between (p, n-f-1) and (p, n) or between 
(p, ft,) and (p, ft   1); and Tx is the functional relation between ^and 
x only. From equation 25, following the technique used for obtaining 
equation 16, it can be shown that

S (26) 
$

for Ax=&y=l. Although equation 26 is a better approximation for 
R^v than equation 24, it results in resistance values only 10 percent 
different from those specified by equation 24 along x=l. At larger 
values of x, the difference between equations 24 and 26 is negligible. 
Thus, equation 24, which is fundamentally equivalent to equations 
6, was accepted for calculating R%v in the model of figure 3. The 
technique for calculating R$x and R%v leading to equations 23 and 
24 may be used for any functional variation of T in space. Resistance 
values computed by means of equations 23 and 24 are indicated on 
figure 3. These values were used in the construction of a model on 
which potentials, resulting from input and output through opposite 
corners of the system, were observed at each node. Only the equipo- 
tential lines developed from these observations are shown on figure 3.



ELECTRIC ANALOG, NONHJOMOGENEOUS AQUIFERS G15

CALCULATING STATE OF THE MODEL FROM MEASURE­ 
MENTS OF POTENTIAL

Provided the model design and measurements were all correct, 
analysis of the observed potential distribution summarized on figure 
3 should yield the original description of the T distribution, namely, 
equation 22. Such an analysis would provide a qualitative test of 
the accuracy of the model solution. To effect this test, a computing 
procedure previously outlined was followed (Stallman, 1956). Rather 
than use equation 22 for computing the spatial rate of change of T, 
it was assumed that the relation T=ax-\-by would approximate 
satisfactorily transmissibility over a small area of the flow field of 
figure 3. The latter approximation contains two unknowns, a and b. 
By algebraic manipulation (StaUman, 1956), the same form can be

stated in terms of two other unknowns, a and -jp ^  > which perhaps

have a more easily visualized physical significance, a is the angle
Aa; 5!T between the x axis and the gradient of T, and -  ^  is a nondimensional

number whose magnitude is highly related to flow-field distortion 
caused by nonhomogeneity. A minimum of two equations is required

to solve directly for the two unknowns, a and -m ^r 

Potentials observed on the model and used in the computations are 
given in table 4. The two nodes marked with code 1 in table 4 were 
used as centers for constructing two finite-difference expressions

TABLE 4. Selected measurements of potential from a model of a rectangular flow
field

13

12

11

10

9

5

30.48

6

36.70

*3, *5 

33.23

30.00

7

46. 16

*1, *5 
40.82

*1, *2, *3, 
*4,*5 
36. 12

*2, *5 
32.05

28.56

8

44.84

*4, *5 

38.72

33.74

9

40.44

"Code numbers identify setsjrf nodes used for finite-difference computations. See table 5.
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TABLE 5. Aquifer characteristics calculated -from selected potential measurements)
assuming T=ax+by

Computation 
code (see 
table 4)

1

2

3

4

5

Centers of 
node sets

x= 7 
2/=12. 5

x- 7 
y=11.5

x = 6. 5
y=12

x= 7. 5 
2/=12

x= 7 
2/=12

AZ&T
Tdx 

from eq. 22

-0. 125

-0. 125

-0. 133

-0. 105

-0. 125

AZ&T
Tdx 

calculated from 
observed 
potentials

-0. 110

-0. 142

-0. 391

-0. 162

-0. 150

a
calculated from 

observed 
potentials

+ 4°-45'

-4°-27'

-22°-27'

-8°-5'

OO Acyt
O TTirf

Number 
of equa­ 
tions in 

set solved

2

2

2

2

5

Ax 5Tneeded for calculating a and - - ^  Under code 5, five finite- 

difference equations were constructed and normalized to solve for 
the two unknowns, the latter process being used to minimize the 
effects of random errors in observed potentials. Calculated results 
given in table 5 are keyed to the data of table 4 by code numbers 1 
through 5. According to equation 22, all calculated values of a 
should be zero. With the exception of code 3, the trend of T computed 
from the potential measurements agrees reasonably well with the 
trend computed from equation 22. The results given in table 5 
indicate that under some conditions reasonably good estimates of 
T variations in aquifers could be obtained from water-level altitudes 
without other detailed knowledge of the aquifer characteristics.

A# dTValues of a and -^ ̂   calculated from the observed potentials are 
1 ox

highly sensitive to errors in the potential distribution. A comparison 
of such calculated values with the correct values given by the equations 
defining the aquifer is useful for indicating areas of the model where 
even slight local errors have been made. However, calculated values

of a. and -jf Y~ cannot be used for directly obtaining a quantitative 

evaluation of total error in the observed potential.

COMPUTATION OF ERRORS IN POTENTIALS OBSERVED
ON THE MODEL

In passing from equation 1 to equation 2, simple finite-difference 
approximations of the differentials in equation 1 were accepted as
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adequate without qualification. Then the approximations inherent in 
equation 2 were applied as a basis for model design. Thus, errors 
due to the finite-difference approximations occur in the potential 
distribution observed on the model. A more accurate statement 
relating finite-differences to the differentials than was used in develop­ 
ing equation 2 may be obtained from Taylor's formula (Scarborough, 
1958, p. 338) after letting Ax=^y X, whence

. , 
4! dyV 6! +d^/V ' ' ' l '

i h-! x2 dx 5% , -,,
' ' ' ^ '2x 3! cte3 5! dx5 ' ' '

- 23 4 , ,
' '   ( }dy 2x 3! cty3 5! d ' '  

The infinite series of differential terms on the right side of each of 
equations 27a-c has not been accounted for in the model design 
based on equation 2. Error due to this omission is called truncation 
error, which will be represented in the following by e z . An expression 
for e t at any point (p, ri) can be obtained by substituting in equation 
1 the equations 27a-c, and subtracting the following modified 
form of equation 2 from the result:

n-i <>T
X2 2x dx 2x

(2a) 
Putting all the e t into the potential at (p, n), it can be seen that

!^_n^ /^_I_<^_L^ ̂ _L X2 ~L4! W1"^"1" 6! Vdx^d

rx2
+L3!

As fixed by the assumptions leading to equation 28, e t is the error 
in potential at (p, ri) due to inadequate theoretical representation of 
potentials in the model region bounded by p l,p-}-l, n l, andr^+1. 
It may be evaluated approximately by obtaining finite-difference 
estimates (see Southwell, 1946, p. 229-237) of all the derivatives 
of significance in equation 28 from the problem solution and values
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>* rr\ ^k frt

of T, j > and ^  from the model design criteria. Obviously from

equation 28, the truncation error is dependent on both the degree 
of curvature of the potential surface and on the degree of non- 
homogeneity of the aquifer represented in the model.

In addition to the truncation errors, the observed potentials contain 
errors due to other sources such as faulty or inaccurate readout equip­ 
ment, inaccurate resistance settings or selections, inadequate repre­ 
sentation of the aquifer transmissibility by the model resistance, 
and others. The magnitude of local error from all these sources 
combined can be found by solving for hPtn in equation 2a, after 
substituting in it the potentials observed on the model at points

p+1, p  1, n-{-l, and n  1, and the values of T, 3 ? and 3  fromox oy
the model design criteria. The difference between the value of hp>n 
thus obtained, hp>n (ea. 2a> and the value of hp, n observed on the 
model, hpin (0bs.), equals the sum of all local errors other than those 
arising from truncation of the finite-difference expressions for potential. 

The total local error, AehPi  , at point (p, n) is comprised of only two 
parts, a component due to truncation and another component due to 
other omissions or inaccuracies, and can be expressed as

q. 2a)  ">p, »(obs.) T" f t (29)

The terms in equation] 29 are [illustrated schematically in profile 
through points (p  1, ri), (p, ri), and (p+1, n) on figure 4.

The total error at any point in the model is dependent on the 
distribution and magnitude of AehPtn as just defined, on the spatial 
variations of T, and on the boundary conditions imposed on the 
region of flow. Thus, it is evident that the total error of the solution 
at any point will be a complicated function of all the variables of

h=0

p 1, n p, n p + 1, n 

FIGURE 4. Profile of potential distribution defining local errors.
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flow and cannot be found from any simple relationship. However, 
equation 2 can be corrected to account approximately for local error 
as follows:

As2

(Tp+i   -t p-i) . (hn+i   hn -i) (Tn+i   Tn-i) __""
2Az 2Az 2Ay 2A?/

The addition of the term kjiv, n in equation 2, as shown in equation 
2b, could be simulated on the model of equation 2 by adding 
current from an external source at points (p, ri) in proportion to 
Tpi n(AfhPin}/Ax~ 2. The resulting potential distribution in the model 
would be a solution of equation 2b, and it would be a better approxi­ 
mation than that obtained from the model based on equation 2. 
However, it would not be an exact solution because a corrected solution 
based on equation 2b would alter all the potential values, which in 
turn would alter the values of AfhPtTl . If the solution based on 
equation 2 is found to be relatively accurate, however, it is likely 
that only one correction will ordinarily be needed for an assessment 
of total error at any point. The total error may be obtained by 
subtracting the potentials observed on the model of equation 2 
at all (p, n) from the potential observed on the model of equation 2b. 

Such a procedure seems inordinately complicated and time con­ 
suming. However, for most analog solutions, brief studies of error, 
as defined by equations 28 and 29, will obviate the need for a 
complete and detailed error analysis. Using the data from table 4 
for the point x=7, y ll of figure 3 as an example, the value of 
^(7,ii) (eq. 2a) is found to be 36.12 from equation 2a. This equals 
exactly the value of A?, n ( 0bS .)> and therefore, from equation 29, all 
the detectable local error arises from truncation. From an analysis 
for truncation error by equation 28, using the basic data of the 
solution presented in figure 3, it was found that e, is of the order of 
 0.001 at z=7, y=ll. Unless e z is larger than this over a significant 
area of the field of flow in that problem, it appears doubtful that 
the total error in potential at any point on the solution would be of 
importance in hydrologic studies.

SUMMARY

Resistance elements of an electric model of two-dimensional steady 
ground-water flow through nonhomogeneous aquifers may be assigned 
values inversely proportional to the aquifer transmissibility if varia­ 
tions of transmissibility in space can be represented accurately by 
linear or quadratic equations. The solution error is independent of 
the analogic distance between resistor units, except for errors due to 
truncation of the finite-difference approximations of head, in models
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of aquifers with, variations of transmissibility of first or second degree. 
Where transmissibility changes in space are of third or higher degree, 
model size for a given solution accuracy can be made small by select­ 
ing resistance values inversely proportional to an integral form of 
transmissibility. For some types of aquifers, the latter design pro­ 
cedure may be preferred so as to yield solutions of adequate accuracy 
from a comparatively small number of components.

A procedure for computing local error at each point in the analog 
solution has been proposed, using finite-difference techniques. An 
approximation of the total error in the analog solution can be ob­ 
tained by injecting currents proportional to the calculated local error 
at each point on the model.
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